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LEITER TO THE EDITOR 

Method of a two-dimensional equation for the 
three-dimensional problem of electromagnetic wave propagation 
in a thin inhomogeneous waveguide 

V V Solov’ev 
Institute for Terrestrial Magnetism, Ionosphere and Radiowave Propagation, 142092, 
Trroitsk, Moscow Region, USSR 

Received 22 March 1991, in final form 19 June 1991 

Abstract. A method for analysis o f  a three-dimensional radiowave propagation problem 
in a thin spherical inhomogeneous waveguide i s  presented. This method has a wider range 
of applications than the technique of telegraphist’s equations. The solution of the three- 
dimensional boundary value problem i s  approximated by means of the solution of a 
two-dimensional Schradinger equation with a periodic potential. 

The solution of the three-dimensional problem of radiowave propagation in an 
inhomogeneous medium involves certain analytical and numerical difficulties. An idea 
to decrease the dimension of the problem can appreciably help to simplify the determi- 
nation of the solution. The technique oftelegraphist’s equations [ l ,  21 can be considered 
as an example of the implementation of this idea. 

The reduction of the problem to fewer dimensions, however, may lead to a loss of 
some essential three-dimensional properties of the solution [3]. For instance, the 
solution of an inhomogeneous problem can be represented by expansion in terms of 
eigenfunctions which are solutions of the corresponding homogeneous one [4]. This 
representation is natural under validity conditions of telegraphist’s equations [ 5 ] .  The 
inhomogeneity of a medium may result in the appearance of new eigenvalues in the 
problem, and, consequently, in an increase of dimensionality of a subspace of eigen- 
functions. In this case the above technique does not function (see in detail [ 5 ]  
section 35). 

The goal of the present paper is, proceeding from a complete set of three- 
dimensional Maxwell equations, to derive two-dimensional differential equations that 
could embrace the largest possible circle of physical effects resulting from the 
inhomogeneity of the medium. The characteristic dimension of a waveguide along one 
of the coordinates is assumed to be less than a wavelength (a thin waveguide). 

Let us consider a concrete physical system. Let a domain represent a spherical 
layer (Earth-ionosphere cavity) with a well-conducting Earth and an inhomogeneous 
ionosphere. 

The vector wave equations for the electric field E derived from Maxwell’s equations 
in a spherical coordinate frame ( r ,  8, q )  can be written as 
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For simplicity, the present letter makes use of the following boundary conditions: 

E e I o =  E, Io = 0 (20) 

E R I ~ = z ( ~ ,  Q)KII E,~I=--z(@, (P)HBII. ( 2 b )  

Subscripts 0 and 1 indicate the magnitude of functions E,,, E*, He and H, at the 
surface of the Earth and ionosphere, respectively. Distance h between the Earth and 
ionosphere is set constant. The ionosphere is characterized by surface impedance 

I he set of equations ( i )  is given in a somewhat unusuai, but convenient form for 
our goals: equation ( l a )  is not bound to the other equations of the set. The right-hand 
part of equation ( l b )  is determined by the solution of ( la) .  The right-hand part of 
the equation ( I C )  is determined by the solutions of equations ( l a )  and ( l b ) .  

Owing to good conductivity of the Earth and ionosphere the components Eo and 
E, are small as compared with E,. Therefore, first of all, we shall focus our attention 

.w& as fol;o.wS: 

4 0 ,  PI. - 

oi, eq.uaiioi, i i 0 j  which w.e 

- 
E, = rE,. 

(3) 

Together with variables r, 0, 'p it will be convenient to use variables x, 0, Q, where 
x=(r - rn) /h ,  r,, is the radius of the Earth, h = r , - r o ,  r, being the radius of the 
ionosphere. We shall put magnitude z = as(0, q )  small: a== h/r,,<< 1, ( a  being a small 
constant value); however, asla%< 1 and a8/ap == 1 ,  i.e. dependence z on 0 and Q can 
be fast. The desired fields, though, are assumed to be fairly smooth. - 

Let us divide a fast and slow dependence over variable r, writing E, in the form of 

i , = ~ ( r ;  ~ , q ) ~ ( e , p ; x )  (4) 

where R is solution of the following problem: 

U is a number (a complex one in the general case). The solution of the problem ( 5 )  
has been well studied (it is a linear combination of Bessel functions, for example), 
therefore we shall consider function R(r ;  0, a )  as a well known one. 
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Thus, the problem ( 5 )  gives us a set of basis functions which parametrically depend 

Function U(O, 'p; x) will be presented as 
on 8, 'p (K = ~ ( 8 ,  'p) if z depends on 0, 'p). 

U =  1 -- 
" = o n !  Jx" 

Making use of the equation div E = 0 and of boundary conditions of (Za) ,  we obtain 

Employing equation (3) and the boundary conditions, we have: 

dX2 l o = - >  (d8i+sin'8 -+cot J'p 
0--+LxJ-2u0 J uo 

(8) 

J' U. h 2  J2Uo 1 J2U, 

JO 

6 = r;(o'/c'- K ~ ) +  u. 

One has to take into account the terms JRld'p, JRIJO, JZR/J'p2,. . . in equation (8) 
and below when the amplitude a is not small. 

In such a way we can calculate a derivative of any order of magnitude, entering 
in relation (6). All of them are expressed through function U, and its derivatives over 
O and 'p. Here we shall confine ourselves to terms of the order of h'/r;. 

Our task now is to find an equation for U,. Let us use for this goal the boundary 
conditions on the ionosphere ( 2 b )  and div E = 0. We have 

Let us make an expansion in (9) over powers of h/ro, using (7), (8) and equalling the 
terms with the same powers of h/ro. Linear terms over h/r, in (9) are reduced. Quadratic 
terms over h/ro yield the equation 

J2 U, 
Jg2 
- 

+[ r;(o'/c' - K ~ )  - i r i (o /e  - K ) z /  h + U] U,= 0. (10) 

We note that the factor for the terms resulting from inhomogeneity of the medium, 
in the framework of the assumptions made, is c a / ( o h ) s  1. If S =constant, from (10) 
there follow well known solutions for a homogeneous cavity ( K  = w / c ,  U =  n ( n + l ) ) .  

It is natural that the equations obtained at different powers of hlr, do not contradict 
one another. This is clear from the scheme of obtaining these equations. A rigorous 
proof of this fact is omitted here. 

The equation (10) can be reduced to the form of the Schrodinger equation with a 
periodic potential. For this we shall make the replacement 

i ca 
2 o h  

U,,=uexp@ @=---a  

then for U we shall have the equation: 
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The potential W(0,  p) is a periodic function of p. At the ’boundary’ 0 = 0, T, U is 
constant, that is determined by a source in the general case. Here, for simplicity, the 
sources were not taken into account, and equation (11) (or (10)) can be uscd for 
studying the spectrum of eigenoscillations of an inhomogeneous cavity. 

If the solution of the problem ( 1  1) is determined, for example, from numerical 
experiment, we can, using the formulae (61, (7) and (X), calculate the U(0,pP;x) 
function, and then the EJr, 0, p) field as well. 

In this letter the main idea of the method has been considered. A scheme of choosing 
two-dimensional equations, under more realistic boundary conditions on the Earth 
and ionosphere, or owing for the interaction of guided modes, is not changed in essence 
and will be published separately. 

The author expresses his gratitude to A K Kerimov and V V Kopeikin of IZMIRAN 
and Ju A Kuperin of Leningrad University for discussing the results of this work. 
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